Nucleotides

Part LVII 1)

Synthesis of Phosphoramidite Building Blocks of 2'-Amino-2'-deoxyribonucleosides: New Compounds for Oligonucleotide Synthesis

by Beate Greiner and Wolfgang Pfleiderer*

Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-78434 Konstanz

The chemical synthesis of 2'-amino-2'-deoxyribonucleosides of uracil, cytosine, adenine, and guanine, and their conversion into suitably protected 3'-phosphoramidite building blocks **35–40** for oligonucleotide synthesis are described. The aglycone and the 2'-amino functions were protected using the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group. The synthesis of the 3'-O-succinyl (3'-O-(3-carboxypropanoyl))-substituted starting nucleoside **41** is described and its behavior examined in solution and on solid phase with regard to an anticipated migration during 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) deprotection. Oligonucleotides were prepared using the new building blocks, and their hybridization properties were studied by UV-melting techniques.

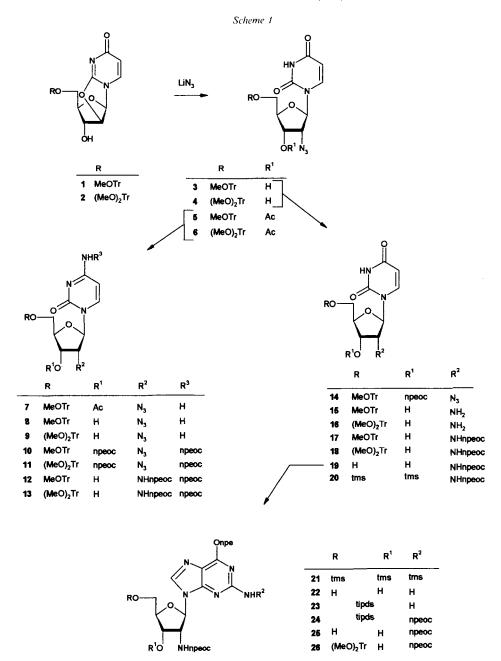
1. Introduction. – In recent years, antisense oligomers have emerged as a promising new therapeutic paradigm. The basic requirements for effective antisense oligomers are sufficiently strong hybridization with the RNA sense strand, stability against enzymatic degradation, and sufficient cellular uptake [2–4]. The search for derivatives which fulfill these requirements has led to the introduction of a huge variety of modifications in the phosphodiester backbone, at the bases, and at the sugar moieties of oligomers.

Modification of the 2'-position in oligomers is especially interesting, as increased thermal stability of duplex structures with RNA have been observed for 2'-fluoro or 2'-O-alkyl derivatives [5][6]. The first poly(2'-amino-2'-deoxyuridylic acid) and poly-(2'-amino-2'-deoxycytidylic acid) were synthesized enzymatically by *Eckstein* and co-workers [7], showing increased resistance to enzymes. Besides, it was observed that poly-(2'-amino-2'-deoxyuridylic acid) did not form a duplex with poly(rA), and the duplex of poly(2'-amino-2'-deoxycytidylic acid)/poly(rI) was less stable than the unmodified duplex. The effects of 2'-amino substitution of nucleosides on oligomer-hybridization properties have not been sufficiently studied and are more interesting for further investigations, also against the background of catalytic ribozymes [8–10].

We report here the synthesis of suitably protected 2'-amino-2'-deoxyribonucleotide phosphoramidite building blocks and their use in the solid-phase synthesis of 2'-amino-modified oligomers using the npe/npeoc strategy [11][12]. The aglycones and the 2'-amino function were protected using the 2-(4-nitrophenyl)ethyl (npe) and the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) groups which proved to be very efficient for the protection of amino groups in the 3'- [13-15] and 5'-position of nucleosides [16] as well

¹⁾ Part LVI: [1].

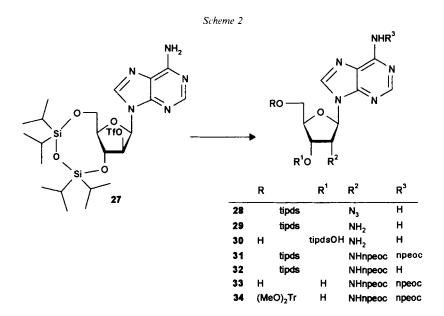
as protection of the exocyclic amino groups of the bases in the synthesis of oligoribonucleotides [17], oligoarabinonucleotides [18], and 2'-amino-2'-deoxyarabino oligonucleotides [19].


2. Syntheses. – The key building blocks for the synthesis of npe/npeoc-protected 2'-amino-2'-deoxycytidine, -guanosine, and -uridine (Scheme 1) were the 5'-O-(4-methoxytrityl) (MeOTr)- and 5'-O(4,4'-trityl)((MeO)₂Tr)-protected 2'-azido-2'-deoxyuridine derivates 3 and 4, respectively, which were synthesized using a slightly modified literature procedure [20]. Thus, 5'-O-(MeOTr)- and 5'-O-((MeO)₂Tr)-2,2'-anhydrouridine (1 and 2, resp.) were reacted with LiN₃ in the dark [21-24] to give the corresponding 2'-azido-2'-deoxy derivates 3 and 4, respectively (Scheme 1).

Conversion of the acetylated uridines 5 and 6 to the corresponding cytidines was carried out using the tetrazolide method [28–30] resulting in 2'-azido-2'-deoxy-5'-O-(4-methoxytrityl)- (8) and 2'-azido-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)cytidine (9) in high yield. Incomplete deprotection of the 3'-acetyl group in the conversion of 5 to 8 led to a mixture of 3'-O-acetyl-2'-azido-2'-deoxy-5'-O-(4-methoxytrityl)cytidine (7) and 8 (43%).

The subsequent introduction of the npeoc group into **8** and **9** was achieved by reaction of 3-methyl-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}-1H-imidazol-3-ium chloride [26] in CH₂Cl₂ solution in the presence of 4-(dimethylamino)pyridine (DMAP) as activator to give, with simultaneous protection of the 4-NH₂ and 3'-OH groups, compounds **10** and **11**, respectively. *Staudinger* reduction of the N₃ group in **10** and **11** led *via* migration of the npeoc group to 2'-deoxy- N^4 -{[2-(4-nitrophenyl)ethoxy]carbonyl}-5'-O-(4-methoxytrityl)-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-({[2-(4-nitrophen

In the uridine series, the N₃ function of the key building blocks 3 and 4 was reduced by *Staudinger* reduction to give 2'-amino-2'-deoxy-5'-O-(4-methoxytrityl)- (15) and 2'-amino-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)uridine (16) [20][25], respectively (*Scheme 1*). Selective protection of the 2'-amino function of 15 and 16 with the npeoc group was performed at 0° using 2-(4-nitrophenyl)ethyl chloroformate [26] in pyridine to give the 2'-deoxy-5'-O-(4,4'-dimethoxytrityl)-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino)- (17) and 2'-deoxy-5'-O-(4,4'-dimethoxytrityl)-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino)-uridine (18) in 79 and 87% yield, respectively. Another approach in which the 3'-OH-function of 3 was protected with the npeoc group to give 2'-azido-2'-deoxy-5'-O-(4-methoxytrityl)-3'-O-{[2-(4-nitrophenyl)ethoxy]carbonyl}uridine (14), followed by the *Staudinger* reduction, also led to 17, due to migration of the npeoc group [27] to the amino function, to form a thermodynamically more stable carbamate structure than the original carbonate function.


The synthetic problems concerned with the synthesis of the 2'-amino-2'-de-oxyguanosine series prompted us to make use of a transglycosidation reaction [32-35]. The sugar donor 19 was prepared by detritylation of 18 with 6% AcOH in $CH_2Cl_2/MeOH$ 4:1 in 88% yield (*Scheme 1*). The transglycosidation reaction required transient protection of O^6 -(npe)-guanine [36][37] and 19, which was achieved by refluxing in

hexamethyldisilazane (HMDS)/bis(trimethylsilyl)acetamide (BSA)/MeCN, followed by the addition of trimethylsilyl triflate (tms-Tf) as promoter to give, after workup, the desired 2'-deoxy-O⁶-[2-(4-nitrophenyl)ethyl]-2'-({[2-(4-(nitrophenyl)ethoxy]carbonyl}-amino)guanosine (22) in 85% yield. The structure assignment of the glycosidic linkage

in 22 was checked by ROESY-NMR indicating the β -D-configuration. When the disilylation step was omitted, the silylated derivatives 20 and 21, respectively, could be isolated. To protect the aglycone amino function of 22, the sugar OH groups were first protected using *Markiewicz*'s reagent (1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane; tipds Cl₂), giving 23 in 73% yield, followed by acylation with 2-(4-nitrophenyl)ethyl carbonochloridate in pyridine to give the fully protected nucleoside 24. Desilylation with F⁻ions [38] afforded 2'-deoxy- O^6 -[2-(4-nitrophenyl)ethyl]- N^2 -{[2-(4-nitrophenyl)ethoxy]-carbonyl}-2'-({[2-(4-nitrophenyl)ethoxy]-carbonyl}-2'-({[2-(4-nitrophenyl)ethoxy]-carbonyl}-2'-OH position with (MeO)₂TrCl/DMAP in pyridine to give the desired nucleoside 26.

The 2'-amino-2'-deoxyadenosine series was synthesized starting from 2'-azido-2'-deoxy-3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)adenosine (28) which was prepared by a multistep procedure as described in [32], except that the (trifluoromethyl)-sulfonylation step was slightly modified. The (trifluoromethyl)sulfonyl group of 27 was then displaced by nucleophilic attack with LiN₃ in DMF to yield 28 in 90% yield (Scheme 2). Reduction of the N₃ group in 28 to 29 was performed a) by radical reduction using 2,2'-azobis[isobutyronitrile] (AIBN) and Bu₃SnH [32], b) by Staudinger reduction with PPh₃ in THF/H₂O, or c) PPh₃ in NH₄OH/dioxan/pyridine. In the latter procedure, partial ring opening at the 5'-position was observed resulting in 30 as by-product. The simultaneous protection of the aglycone and the 2'-NH₂ functions was carried out using 3-methyl-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}-1H-imidazol-3-ium chloride in CH₂Cl₂ solution and DMAP as activator. When an insufficient amount of DMAP was used, monoacylated product 32 was also isolated besides the desired compound 31. Desilylation of 31 with F⁻ ions (\rightarrow 33) and further treatment with (MeO)₂TrCl/DMAP in pyridine gave 34 in 86% yield.

The partially protected nucleosides 12, 13, 17, 18, 26, and 34 were converted into their corresponding 3'-O-[2-(4-nitrophenyl)ethyl]phosphoramidites 35-40 by reaction with 2-(4-nitrophenyl)ethyl phosphorodiamidite [39] under 1H-tetrazole and/or pyridine-hydrochloride activation [40–42] (*Scheme 3*). However, with pyridine hydrochloride as activator, the obtained yields were ca. 10% higher.

	R	В	Activator a)		R	В
12	MeOTr (MeO) ₂ Tr	Cyt npecc Cyt npecc	tet pyHCl	35 36	MeOTr (MeO) ₂ Tr	Cyt npeoc
17	MeOTr	Ura	tet	37	MeOTr	Ura
	(MeO) ₂ Tr (MeO) ₂ Tr	Ura Gua ^{npe}	pyHCl pyHCl	38 39	(MeO) ₂ Tr (MeO) ₂ Tr	
30	(MeO) ₂ Tr	Ade npeoc	tet, pyHCl		(MeO) ₂ Tr	

a)tet = 1H-tetrazole; pyHCl = pyridine hydrochloride

$$Ura = \begin{pmatrix} O & NH - & NH - & O - & NH - & O - & NH - & O - &$$

For solid-phase synthesis, 2'-N-(npeoc)-3'-O-succinyl-derivatized solid supports could not be used as starting nucleoside, due to the tendency of the npeoc group to migrate (Scheme 4). As a consequence of this amide-bond formation during the solid-

phase synthesis, it was assumed that after the npe/npeoc deprotection step with DBU, the synthesized oligomer could not be cleaved from the solid support by treatment with concentrated NH₃ solution.

To confirm the prediction, 5'-O-protected 3'-O-(3-carboxypropanoyl)-2'-N-(npeoc)-adenosine derivative 41 was synthesized by reaction of 34 with succinic anhydride/DMAP in dry CH_2Cl_2 . This was then treated with DBU a) in solution or b) on the solid support. a) After treatment of 41 with DBU in pyridine for 2 days, followed by neutralization with AcOH, compound 42 was isolated. Characterization by 1H -NMR showed two characteristic signals at 5.78 ppm (HO-C(3')) and 8.23 ppm (CONH-C(2')).

b) Compound 41 was reacted with 500-Å LCAMA-CPG (= (long-chain alkyl)-methylamine-controlled pore glass) [11][12][17] using 2-{[(2-(2-cyanoethoxy)-2-oxoethylidene]amino}-1,1,3,3-tetramethyluronium tetrafluoroborate (TOTU) and N-methylmorpholine as coupling reagents in MeCN to give the solid support 43 with a loading of 14 μ mol/g.

Successive treatment of 43 with DBU, 3% Cl₃CCOOH, and concentrated ammonia solution did not result in the release of nucleoside from the support confirming the expected migration ($Scheme\ 4$). Therefore, $3'\text{-}O\text{-}(3\text{-}carboxypropanoyl)\text{-}}2'\text{-}deoxy\text{-}}5'\text{-}O\text{-}(4,4'\text{-}dimethoxytrityl)\text{-}}N^4\text{-}\{[2\text{-}(4\text{-}nitrophenyl)\text{ethoxy}]\text{carbonyl}\}\text{cytidine (44), }3'\text{-}O\text{-}(3\text{-}carboxypropanoyl)\text{-}}5'\text{-}O\text{-}(4,4'\text{-}dimethoxytrityl)\text{thymidine (45) [17], and }2'\text{-}acetamido\text{-}}3'\text{-}O\text{-}(3\text{-}carboxypropanoyl)\text{-}}5'\text{-}O\text{-}(4\text{-}methoxytrityl)\text{uridine (46) [43]}$ were used instead as starting compounds in the solid-support synthesis. As a consequence, the prepared oligomers 47-55 have a deoxynucleoside at their 3'-end.

The oligomers 47-55 (Table 1) were synthesized using the solid-phase phosphoramidite apporach developed by Caruthers and co-workers [44-47]. Four chemical steps and intermediate washing steps were necessary for each elongation step. At first, the terminal (MeO)₂Tr group was cleaved with 3% Cl₃CCOOH in CH₂Cl₂. The average coupling efficiency was monitored by absorption measurement of the released (MeO)₂Tr solutions. During the coupling step, 0.1M nucleoside phosphoramidite (see 35-40) and 0.5m activation reagent in MeCN were delivered to the solid support. After the condensation, unreacted OH functions were blocked by capping (15 s) with Ac₂O/2,6dimethylpyridine/1-methyl-1H-imidazole in THF. The phosphite-triester bridge was oxidized with 0.05M I₂ in THF/pyridine/H₂O for 25 s. After the last synthesis cycle, the support was treated with 3% Cl₃COOH/CH₂Cl₂ and then with 1M DBU in MeCN for 12 h to remove all protecting groups. The oligonucleotide was cleaved from the support by treatment with concentrated NH₃ solution for 2.5 h, and the resulting solution was lyophilized. Completeness of deprotection and the quality of the synthesized oligonucleotides were confirmed by reversed-phase HPLC. The crude oligomers 48 and 54 were also analyzed by polyacrylamide-gel electrophoresis indicating one main product and no failure sequences.

Based on our experience from solid-support synthesis of oligoarabinonucleotides [38], α -arabinooligonucleotides [36], β -oligoarabinoaminonucleotides [19], affording coupling times of 600 and 1200 s, respectively, we checked coupling times of 900 and 1800 s. It turned out that a coupling time to 1800 s is not advisable, especially for the syntheses of longer oligonucleotides, due to more side reactions. Preliminary experiments

Sequence $(5'-3')^a$)	$t[s]^b$)
$U_n C_n A_n dC (47)^c)$	900; 1800
$C_n C_n C_n C_n dC (48)^c$	900; 1800
$U_n U_n U_n U_n U_n U_n dt (49)^d$	270
$A_n A_n A_n A_n UNHAc (50)^d$	420
$C_nC_nC_nC_nC_nC_nC_nC_nC_nC_ndC$ (51)°	1800
$C_nA_nC_n$ C_nGA_n GGC_n C_nGG C_nGdC (52)°)	dN: 45; N _n : 900
d(GGT TCC A _n TG CA _n T GGA _n A _n CC) (53) ^c)	dN: 45; N _n : 900
$d(GGU_n U_nCC A_n U_nG CA_n U_n GGA_n A_nCC) (54)^c)$	dN: 45: N _n : 1800
$G_nG_nU_n^{\top}U_n^{\top}C_nC_n^{\top}A_nU_nG_n^{\top}C_n^{\top}A_n^{\top}U_n^{\top}G_n^{\top}G_n^{\top}A_n^{\top}A_n^{\top}C_n^{\top}dC_n^{\top}(55)^d)$	dN: 45, N _n : 420

Table 1. Synthesized Oligonucleotides

a) $N_n = N_{d^{2'}n} = 2'$ -Amino-modified 2'-deoxynucleotides; $dN = N_{d^{2'}} = 2'$ -unsubstituted 2'-deoxynucleotides; for convenience, the hyphens representing the phosphodiester linkages are omitted. b) t = Coupling time. c) 1*H*-Tetrazole activation.

with pyridine hydrochloride [42] as activator are very promising since they allow a substantial shortening of the coupling time.

3. Hybridization Experiments. – The stabilities of duplexes formed between oligomers 51, 52, 57, or 59, and a complementary DNA target 58 or 60 as well as between the self-complementary sequences 53-56 were studied by measuring the melting profiles and determining the melting temperatures as an informative parameter. The experiments were carried out in Na₂HPO₄/NaH₂PO₄ buffer pH 7.4 with 0.5 OD oligonucleotide (*Table 2*).

Sequence $(5'-3')^a$)	c [Na +]	$T_{\mathfrak{m}}$ [°C]	
d(GGT TCC ATG CAT GGA ACC) (56) ^b)	0.15	65.5	
$d(GGT\ TCC\ A_nTG\ CA_nT\ GGA_n\ A_nCC)\ (53)^c)$	0.15	48.6	
$d(GGU_n U_nCC A_n U_nG CA_n U_n GGA_n A_nCC)$ (54)	0.15	22.7	
d(GGU, U,CC A,U,G CA,U, GGA, A,CC (54)°)	0.3	22.2	
$G_nG_nU_n^{\dagger}U_n^{\dagger}C_nC_n^{\dagger}A_n^{\dagger}U_n^{\dagger}G_n^{\dagger}C_n^{\dagger}A_n^{\dagger}U_n^{\dagger}G_n^{\dagger}G_n^{\dagger}A_n^{\dagger}A_n^{\dagger}C_n^{\dagger}dC$ (55)	0.12	n.o	
$G_nG_nU_nU_nC_nC_nA_nU_nG_nC_nA_nU_nG_nG_nA_nA_nC_ndC$ (55)	0.024	n.o.	
d(CCC CCC CCC) (57) ^b)	0.15	61.6	
d(GGG GGG GGG) (58) ^b)			
$C_n C_n C_n C_n C_n C_n C_n C_n C_n C_n $	0.12	n.o.	
d(GGG GGG GGG) (58) ^b)			
d(CAC CAG CGG CGC) (59) ^b)	0.15	62.8	
d(GCG CCG TCG GTG) (60) ^b)			
$C_n A_n C_n C_n A_n G C_n G G C_n G d C $ (52)	0.15	29.7	
d(GCG CCG TCG GTC) (60) b)			

Table 2. Oligonucleotides and Their T_m Values

The results can be summarized as follows: the incorporation of the 2'-amino groups has a strong destablization effect on thermal stability. For the duplex 52/60, the $T_{\rm m}$ was decreased from 62.8° for the unmodified duplex to 29.7° by incorporation of five 2'-amino-2'-deoxycytidines and two 2'-amino-2'-deoxyadenosines. In case of the duplex 51/58, where 51 was a completely 2'-amino-modified oligomer, no melting point could be observed. In the series of the self-complementary sequences 53-56, the melting point decreases from 65.5° for the unmodified duplex to 48.6° by exchange of the four 2'-deoxyadenosine with 2'-amino-2'-deoxyadenosine moieties (see 53) and decreased further to 22.7° by incorporation of eight 2'-amino-2'-deoxynucleosides (four $A_{\rm d^2'n}$ and four $U_{\rm d^2'n}$; see 54). For the completely 2'-amino-modified self-complementary sequence, 55 no melting point could be observed.

Previous studies indicate that 2'-amino-2'-deoxynucleoside [48] and short oligonucleotides thereof [49] exist primarily in the 2'-endo-conformation which should favor DNA/DNA duplex with a B-form geometry, whereas DNA/RNA duplex preferentially adopt an A-form geometry derived from 2'-exo-conformations of the basic nucleosides. These expectations could not be observed in the presented investigations, since we found in all cases of hybridizations decreased $T_{\rm m}$ values due to destabilizing effects resulting probably

a) $N_n = N_{d^{2'}n} = 2$ -Amino-modified 2'-deoxynucleotide, $dN = N_{d^{2'}} = 2$ '-unsubstituted 2'-deoxynucleotides; for convenience, the hyphens representing the phosphodiester linkages are omitted. b) Sequences 56 and 57-60 were synthesized by the npe/npeoc strategy [17]. c) Purified by HPLC. d) n.o.: not observed.

from electrostatic interactions between the 2'-amino and the negatively charged phosphodiester function, and unknown secondary effects perturbing a normal duplex structure as also described by *Shabarova* and co-workers [24], *Miller et al.* [49], and *Eckstein* and co-workers [50].

4. Physical Data. – All newly synthesized compounds were characterized in the usual manner by elemental analysis, UV, ¹H-NMR, and in some cases, by IR and ³¹P-NMR spectra (see *Exper. Part*).

Experimental Part

General. Products were dried under high vacuum. TLC: precoated silica gel thin-layer sheets F1500~LS~254 from Schleicher & Schüll. Flash chromatography (FC): silica gel (Baker, 30–60 µm), 0.3–0.4 bar. HPLC: Merck Hitachi L-6200, D-2000 chromatointegrator, detection at 260 nm (Uvikon 730 SLC, Fa. Kontron); column RP-18 Lichrospher (125 × 4 mm, 5 µm, Merck); flow rate 1 ml/min; mobile phase: A, 0.1M aq. (Et₃NH)OAc buffer (pH 7); B, A + MeCN 1:1; gradient: 0 min 95% A; 2 min 95% A; 32 min 60% A; 37 min 100% B; 40 min B; 45 min 95% A; 50 min 50% A. UV/VIS: Perkin-Elmer, Lambda 15; λ_{max} in nm (log ε). Melting curves: Perkin-Elmer Lambda 2; temp. control by Peltier element; programmer PTP-6. IR: Perkin-Elmer model 1600 series FTIR; CH₂Cl₂ solns.; in cm⁻¹. ¹H-NMR: Bruker AC 250; δ in ppm rel. to DMSO. ³¹P-NMR: Joel 400 MHz; in ppm rel. to H₃PO₄.

- 1. 2'-Azido-2'-deoxy-5'-O-(4-methoxytrity!)uridine (3). A suspension of 1 [20][21-23] (2.66 g, 5.33 mmol) and LiN₃ [51] (653 mg, 13.3 mmol) was dissolved in dry DMF (50 ml) at 130°, and benzoic acid (651 mg, 5.33 mmol) was added. Further equiv. of LiN₃ (3 × 13.3 mmol) were added gradually every 30 min. The mixture was poured into ice-water (50 ml), washed with H₂O (30 ml) and CHCl₃ (3 × 50 ml). The combined org. layers were dried (MgSO₄) and evaporated *in vacuo*. The residue was purified twice by FC (toluene/AcOEt 2:1 \rightarrow 1:1): 2.06 g (71%) of **2**. Colorless foam. UV (MeOH): 260 (3.99), 230 (4.22). IR (CH₂Cl₂): 2120. 1 H-NMR ((D₆)DMSO): 11.44 (s, NH); 7.69 (d, H-C(6)); 7.21-7.39 (m, 12 H, MeOT); 6.91 (d, 2 H o to MeO); 6.00 (d, H-C(1')); 5.36 (d, HO-C(3')); 4.36-4.49 (m, H-C(3')); 4.24-4.29 (m, H-C(2')); 3.89-3.95 (m, H-C(4')); 3.73 (s, MeO); 3.24-3.29 (m, 2 H-C(5')). Anal. calc. for C₂₉H₂₇N₅O₆ · 1 /₂ PhMe (587.64): C 66.42, H 5.32, N 11.92; found: C 65.79, H 5.31, N 11.74.
- 2. 2'-Azido-2'-deoxy-5'-O-(4,4'-dimethoxytrityl) uridine (4) [24]. A mixture of 3 (1 g, 1.89 mmol) and LiN $_3$ [51] (463 mg, 9.46 mmol) in dry DMF (10 ml) was heated in the dark at 120° for 16 h and evaporated. The residue was dissolved in AcOEt (50 ml), washed with sat. NaHCO $_3$ soln. (2 × 50 ml) and brine (2 × 50 ml), dried (MgSO $_4$), and evaporated. The residue was purified by FC (CHCl $_3$ /MeOH 49:1, 19:1, and 9:1): 712 mg (66%) of 4. Colorless foam. UV (MeOH): 262 (4.05), 233 (4.37). IR (CH $_2$ Cl $_2$): 2119. ¹H-NMR ((D $_6$)DMSO): 11.44 (s, NH); 7.69 (d, H-C(6)); 7.12-7.29 (m, 9 H, (MeO) $_2$ Tr); 6.83 (m, 4 H o to MeO); 6.00 (d, H-C(1')); 5.73 (d, HO-C(3')); 5.34 (d, H-C(5)); 4.43 (d, H-C(2')); 4.26 (m, H-C(3')); 3.96 (m, H-C(4')); 3.72 (s, 2 MeO); 3.21 (m, 2 H-C(5')). Anal. calc. for C $_{30}$ H $_{20}$ N $_3$ O $_7$ (571.59): C 63.04, H 5.11, N 12.25; found: C 63.06, H 5.17, N 11.83.
- 3. 3'-O-Acetyl-2'-azido-2'-deoxy-5'-O-(4-methoxytrityl)uridine (5). To a soln. of 3 (1.7 g, 3.14 mmol) in dry pyridine (15 ml), Ac_2O (1.6 g, 1.5 ml, 15.7 mmol) was added and stirred at r.t. for 8 h. After addition of MeOH (2 ml), the soln. was evaporated *in vacuo*, the residue dissolved in AcOEt (30 ml) and washed with sat. NaHCO₃ soln. (2 × 30 ml). The org. layer was dried (MgSO₄), evaporated *in vacuo*, and co-evaporated with toluene to remove remaining pyridine. The residue was purified by FC (CH₂Cl₂ + 1 \rightarrow 2% MeOH): 1.3 g (71%) of 5. Colorless foam. UV (MeOH) 260 (4.05), 231 (4.26). IR (CH₂Cl₂): 2115. ¹H-NMR ((D₆)DMSO): 11.50 (s, NH); 7.66 (d, H–C(6)); 7.20 7.38 (m, 12 H, MeOTr); 6.90 (d, 2 Ho to MeO); 5.80 (d, H–C(1')); 5.55 (d, H–C(5)); 5.30 5.32 (m, H–C(3')); 4.70 4.72 (m, H–C(2')); 4.09 4.14 (m, H–C(4')); 3.74 (s, MeO); 3.27 3.37 (m, 2 H–C(5')); 2.09 (s, Ac). Anal. calc. for C₃₁H₂₉N₅O₇· $\frac{1}{2}$ H₂O (592.61): C 62.83, H 4.93, N 11.82; found: C 63.00, H 5.14, N 11.28.
- 4. 3'-O-Acetyl-2'-azido-2'-deoxy-5'-O-(4,4'-dimethoxytrityl) uridine (6). As described in Exper. 3, with 4 (8 g, 13.97 mmol) and Ac₂O (7.14 g, 6.6 ml, 69.98 mmol) in dry pyridine (60 ml, r.t. 15 h; 7 ml MeOH). Purification by FC (toluene/AcOEt 1:1): 7:3 g (91%) of 5. Colorless foam. UV (MeOH): 262 (4.04), 234 (4.38). IR (CH₂Cl₂): 2119. 1 H-NMR ((D₆)DMSO): 11.50 (s, NH); 7.69 (d, H–C(6)); 7.20–7.38 (m, 9 H, (MeO)₂Tr); 6.90 (d, 4 H o to MeO); 5.80 (d, H–C(1')); 5.55 (d, H–C(5)); 5.30–5.32 (m, H–C(3')); 4.70 4.72 (m, H–C(2')); 4.09–4.14

- (m, H-C(4')); 3.72 (s, 2 MeO); 3.27–3.37 (m, 2 H-C(5')); 2.09 (s, Ac). Anal. calc. for $C_{32}H_{31}N_6O_8$ (613.63): C 62.64, H 5.09, N 11.41; found: C 62.46, H 5.23, N 11.14.
- 5. 3'-O-Acetyl-2'-azido-2'-deoxy-5'-O-(4-methoxytrityl) cytidine (7). To a soln. of 5 (500 mg, 0.86 mmol) in dry pyridine (15 ml), 2-chlorophenyl phosphorodichloridate (526 mg, 0.346 ml, 2.14 mmol) and 1H-1,2,4-triazole (326 mg, 4.71 mmol) were added and stirred at r.t. for 16 h. The soln. was evaporated in vacuo, dissolved in CHCl₃, washed with sat. NaHCO₃ soln., dried (MgSO₄), and evaporated. The residue was dissolved in dioxan (10 ml) and 25% aq. NH₃ soln. (5 ml), and stirred at r.t. for 2 h. The mixture was submitted to FC (CH₂Cl₂/MeOH 19:1 and 9:1): 180 mg (36%) of 7, followed by 200 mg (43%) of 8.
- Data of 7: Colorless foam. UV (MeOH): 269 (3.97), 230 (4.31). IR (CH₂Cl₂): 2119. ¹H-NMR ((D₆)DMSO): 7.63 (d, H–C(6)); 7.17–7.32 (m, 12 H, MeOTr); 6.87 (d, 2 H o to MeO); 5.85 (d, H–C(1')); 5.69 (d, H–C(5)); 5.24 · 5.29 (m, H–C(3')); 4.40–4.47 (m, H–C(2')); 4.06–4.07 (m, H–C(4')); 3.80 (s, MeO); 3.28–3.38 (m, 2 H–C(5')); 2.04 (s, Ac). Anal. calc. for $C_{31}H_{30}N_6O_6 \cdot \frac{1}{2}H_2O$ (591.63): C 62.99, H 5.11, N 14.20; found: C 63.05, H 5.24, N 13.52.
- 6. 2'-Azido-2'-deoxy-5'-O-(4-methoxytrityl) cytidine (8). As described in Exper. 5, with 6 (500 mg, 0.86 mmol), o-chlorophenyl phosphorodichloridate (526 mg, 0.346 ml, 2.14 mmol) and 1H-1,2,4-triazole (326 mg, 4.71 mmol) in dry pyridine (15 ml; r.t., 16 h). The soln. was evaporated *in vacuo*, dissolved in CHCl₃, washed with sat. NaHCO₃, dried (MgSO₄), and evaporated. The residue was dissolved in dioxane (10 ml) and 25 % aq. NH₃ soln. (10 ml), and stirred at r.t. for 15 h. The soln. was evaporated *in vacuo* and the residue purified by FC (CH₂Cl₂/MeOH 95:5, 19:1, and 9:1): 446 mg (96%) of 8. UV (MeOH): 272 (3.95), 230 (4.31). IR (CH₂Cl₂): 2119. 1 H-NMR ((D₆)DMSO): 8.03-8.65 (2 br. s, NH₂); 7.69 (d, H-C(6)); 7.22-7.40 (m, 12 H, MeOTr); 6.89 (d, 2 H o to MeO); 5.93 (d, H-C(1')); 5.74-5.78 (d, HO-C(3')); 5.54 (d, H-C(5)); 4.35-4.44 (m, H-C(2')); 4.06-4.10 (m, H-C(3')); 3.94-3.97 (m, H-C(4')); 3.73 (s, MeO); 3.26-3.34 (m, 2 H-C(5')). Anal. calc. for $C_{20}H_{28}N_6O_5 \cdot \frac{1}{2}H_2O$ (549.59): C 62.36, H 5.41, N 17.19; found: C 62.09, H 5.21, N 16.92.
- 7. 2'-Azido-2'-deoxy-5'-O-(4,4'-dimethoxytrityl) cytidine (9). As described in Exper. 6, with 6 (1 g, 1.63 mmol), 2,5-dichlorophenyl phosphorodichloridate (1.14 g, 4.07 mmol) and 1H-1,2,4-triazole (281 mg, 4.07 mmol) in dry pyridine (20 ml; stirring 16 h). Purification was achieved by FC (toluene/AcOEt 1:1, toluene/AcOEt 1:1 + 2% MeOH, toluene/AcOEt/MeOH 5:4:1): 870 mg (93%) of 9. Colorless foam. UV (MeOH): 271 (3.85), 236 (3.96). IR (CH₂Cl₂): 2128. 1 H-NMR ((D₆)DMSO): 8.00-8.61 (2 br. s NH₂); 7.71 (d, H-C(6)); 7.12-7.43 (m, 9 H, (MeO)₂Tr); 6.89 (d, 4 o to MeO); 5.93 (d, H-C(1')); 5.74-5.78 (d, HO-C(3')); 5.54 (d, H-C(5)); 4.35-4.44 (m, H-C(2')); 3.99-4.06 (m, H-C(3')); 3.94-3-97 (m, H-C(4')); 3.71 (s, 2 MeO); 3.26-3.34 (m, 2 H-C(5')). Anal. calc. for $C_{30}H_{30}N_6O_6 \cdot 1/2 H_2O$ (579.62): C 62.17, H 5.39, N 13.62; found: C 62.19, H 5.42, N 13.84.
- 8. 2'-Azido-2'-deoxy-5'-O-(4-methoxytrity!) N^4 ,3'-O-bis{{2-(4-nitrophenyl)ethoxy}_carbonyl}-cytidine (10). To a soln. of **8** (266 mg, 0.418 mmol) in dry CH_2Cl_2 (10 ml) was added a cat. amount of DMAP, molecular sieve, and 3-methyl-1-{[2-(4-nitrophenyl)ethoxy}_carbonyl}-1H-imidazol-3-ium chloride (390 mg, 1.25 mmol). The suspension was vigorously stirred at r.t. for 3 d, afterwards filtered, and evaporated *in vacuo*. The residue was purified by FC (toluene/AcOEt 1:1, toluene/AcOEt/MeOH 5:4:1): 309 mg (quant.) of **10**. Colorless foam. UV (MeOH): 269 (4.37), 236 (4.46). IR (CH_2Cl_2): 2119. 1H -NMR ((D_6)DMSO): 10.92 (s, NHnpeoc); 8.08-8.17 (m, H-C(6), 4 H o to NO $_2$); 7.52-7.61 (2d, 4 H m to NO $_2$), 7.12-7.36 (m, 12 H, MeOTr); 6.86-6.92 (m, H-C(5), 2 H o to MeO); 5.83 (d, H-C(1')); 5.24 (d, H-C(3')); 4.72 (d, H-C(2')); 4.33-4.48 (d, 2 OCd₂CH₂); 4.16 (d, H-C(4')); 3.72 (d, MeO); 3.30 (d, 2 H-C(5')); 3.07-3.08 (d, 2 OCd₂CH₂). Anal. calc. for C_4 7H $_4$ 2N $_8$ O $_1$ 3 (926.89): C 60.90, H 4.57, N 12.09; found: C 61.18, H 4.73, N 11.60.
- 9. 2'-Azido-2'-deoxy-5'-O-(4.4'-dimethoxytrityl)-N⁴.3'-O-bis{ $\{2-(4-nitrophenyl)ethoxy\}$ -carbonyl}-cytidine (11). As described in Exper. 8, with 9 (1 g, 2.83 mmol), 3-methyl-1- $\{[2-(4-nitrophenyl)ethoxy]$ -carbonyl}-1H-imidazol-3-ium chloride (2.65 g, 8.51 mmol) and DMAP, molecular sieve in dry CH₂Cl₂ (10 ml; r.t., 3 d). Purification by FC (CHCl₃, CHCl₃/MeOH 49:1): 2.23 g (86%) of 11. Colorless foam. UV (MeOH): 270 (4.27), 236 (3.86). IR (CH₂Cl₂): 2119. 1 H-NMR ((D₆)DMSO): 10.80 (s, NHnpeoc); 8.03 8.21 (m, H–C(6), 4 H σ to NO₂); 7.19 7.72 (2m, 15 H, 4 H m to NO₂, (MeO)₂ Tr. NHnpeoc, H–C(5)); 6.72 6.93 (m, 4 H σ to MeO); 5.86 (d, H–C(1')); 5.23 (m, H–C(3')); 4.71 (m, H–C(2')): 4.23 4.49 (m, 2 OCH₂CH₂); 4.17 (m, H–C(4')); 3.72 (s, 2 MeO); 3.30 (m, 2 H–C(5')); 3.07 (m, 2 OCH₂CH₂). Anal. calc. for C₄₈H₄₄N₈O₁₄ · 3 /₂ H₂O (983.95): C 58.89, H 4.81, N 11.38; found: C 58.60, H 4.74, N 11.79.
- 10. 2'-Deoxy-5'-O-(4-methoxytrityl)-N⁴-{[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-({[2-(

- $(m. 16 \text{ H}, \text{MeO}Tr, 4 \text{ H} m \text{ to NO}_2); 6.80-6.91 (m, \text{H}-\text{C}(5), 2 \text{ H} o \text{ to MeO}); 5.95 (d, \text{H}-\text{C}(1')); 5.60 (d, \text{HO}-\text{C}(3')); 4.33-4.37 (2m, 2 \text{ OC}H_2\text{CH}_2, \text{H}-\text{C}(3'), \text{H}-\text{C}(2')); 4.02-4.04 (m, \text{H}-\text{C}(4')); 3.73 (s, \text{MeO}); 3.11-3.34 (m, 2 \text{ H}-\text{C}(5')); 3.07-3.08 (m, 2 \text{ OC}H_2\text{C}H_2). \text{Anal. calc. for } \text{C}_{47}\text{H}_{44}\text{N}_6\text{O}_{13} \cdot \text{PhMe } (993.04); \text{C }65.31, \text{H }5.28, \text{N }8.48; \text{ found: C }64.83, \text{H }5.23, \text{N }7.98.$
- 11. 2'-Deoxy-5'-O-(4,4'-dimethoxytrityl)-N⁴-{[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2')-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2')-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2')-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2')-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2')-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2')-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2')-({[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-({[2-(4-nitrophenyl)ethoxyle
- 12. 2'-Azido-2'-deoxy-5'-O-(4-methoxytrityl)-3'-O- $\{[2$ -(4-mitrophenyl)ethoxy}carbonyl}uridine (14). As described in Exper. 8, with 3 (337 mg, 0.622 mmol), 3-methyl-1- $\{[2$ -(4-mitrophenyl)ethoxy}carbonyl}-1H-midazol-3-mid ium chloride (337 mg, 1.081 mmol), a cat. amount of DMAP, and molecular sieve in dry CH_2Cl_2 (15 ml). Purification by FC ($CH_2Cl_1 + 1 \rightarrow 5\%$ MeOH): 324 mg (71%) of 14. Colorless foam. UV (MeOH): 263 (4.03), 234 (4.35). IR (CH_2Cl_2): 2119. 1 H-NMR ((D_6)DMSO): 11.51 (s, NHnpeoc); 8.14 (d, 2 H o to NO $_2$); 7.63 (d, H-C(6)); 7.54 (d, 2 H o to NO $_2$); 7.19-7.37 (o, 12 H, MeO $_2$); 6.88 (o, 2 H o to MeO); 5.76 (o, H-O(1)); 5.55 (o, H-O(5)); 5.22 (o, H-O(3)); 4.75 (o, H-O(2)); 4.37-4.48 (o, OCO(2O(2o(2)); 4.09-4.12 (o(0, H-O(4)); 3.72 (o(8, MeO); 3.26-3.30 (o(0, 2 H-O(5')); 3.06-3.11 (o(0, OCO(2O(2o(1)). Anal. calc. for O(3o(1)) (734.73): O(62.12, H 4.66, N 11.44; found: O(6).44, H 4.76, N 11.17.
- 13. 2'-Amino-2'-deoxy-5'-O-(4-methoxytrityl) uridine (15). As described in Exper. 10, with 3 (322 mg, 0.564 mmol) and Ph₃P (464 mg, 1.77 mmol) in pyridine (50 ml), dioxane (50 ml), and 25 % aq. NH₃ soln. (50 ml), at r.t., 15 h. Purification by FC (CHCl₃, CHCl₃ + 10 % MeOH): 290 mg (95 %) of 15. Colorless foam. UV (MeOH): 262 (3.99), 230 (4.10). 1 H-NMR ((D₆)DMSO): 7.69 (d, H-C(6)); 7.16-7.41 (m, 12 H, MeOTr); 6.90 (d, 2 H σ to MeO); 5.64 (d, H-C(1')); 5.39 (m, HO-C(3'), H-C(5)); 4.39 (m, H-C(2')); 3.96 (m, H-C(3'), H-C(4')); 3.75 (s, MeO); 3.09-3.46 (2m, 2 H-C(5')). Anal. calc. for $C_{29}H_{27}N_5O_6 \cdot \frac{1}{2}H_2O$ (524.58): C 66.40, H 5.76, N 7.88; found: C 66.04, H 5.85, N 8.33.
- 14. 2'-Amino-2'-deoxy-5'-O-(4.4'-dimethoxytrityl)uridine (16). As described in Exper. 10, with 4 (6.0 g, 10.5 mmol) and Ph₃P (8.26 g, 31.49 mmol) in pyridine (100 ml), dioxane (100 ml), and 25% aq. NH₃ soln. (100 ml), at r.t., 15 h. Purification by FC (CHCl₃/MeOH 49:1, 19:1, 4:1): 5.89 g (94%) of 16. Colorless foam. UV (MeOH): 263 (4.03), 234 (4.35). ¹H-NMR ((D₆)DMSO): 7.60 (d, H-C(6)); 7.12-7.39 (m, 9 H, (MeO)₂Tr); 6.83 (m, 4 H o to MeO); 5.64 (d, H-C(1')); 5.39 (m, H-C(5), HO-C(3')); 4.45 (d, H-C(2')); 3.95 (m, H-C(4'), H-C(3')); 3.72 (s, 2 MeO); 3.09-3.46 (m, 2 H-C(5')). Anal. calc. for $C_{30}H_{31}N_3O_7 \cdot {}^{1}/_2 H_2O$ (5.54.61): C 64.97, H 5.82, N 7.58; found: C 64.87, H 5.79, N 7.51.
- 15. 2'-Amino-2'-deoxy-5'-O-(4-methoxytrityl-2'-($\{[2-(4-nitrophenyl)ethoxy]carbonyl\}amino\}uridine}$ (17). To a cooled soln. (ice-water) of 15 (1 g, 1.94 mmol) in dry pyridine (50 ml), 2-(4-nitrophenyl)ethyl carbonochloridate (669 mg, 2.91 mmol) was added. After 15 min stirring at low temp., the ice-bath was removed, and stirring was continued for 1 h at r.t. The mixture was evaporated *in vacuo* and co-evaporated three times with toluene. The residue was pre-adsorbed on silica gel (2 g) and purified by FC (toluene, toluene/AcOEt 1:1 \rightarrow +2% MeOH): 790 mg (79%) of 17. Amorphous solid. UV (MeOH): 265 (4.26), 230 (4.30). ¹H-NMR ((D₆)DMSO): 11.39 (s, NH); 8.14 (d, 2 H o to NO₂); 7.63 (d, H-C(6)); 7.54 (d, 2 H m to NO₂); 7.12-7.41 (m, 13 H, MeOTr, NHnpeoc); 6.90 (d, 2 H o to MeO); 5.85 (d, H-C(1')); 5.61 (d, HO-C(3')); 5.41 (d, H-C(5)); 3.98-4.2 (m, H-C(3'), H-C(2'), H-C(4'), OCH₂CH₂); 3.73 (s, MeO); 3.16-3.24 (m, 2 H-C(5')); 2.97-3.09 (t, OCH₂CH₂). Anal. calc. for C₃₈H₃₆N₄O₁₀ (708.73): C 64.40, H 5.12, N 7.91; found: C 64.23, H 5.31, N 7.38.
- 16. 2'-Deoxy-5'-O-(4.4'-dimethoxytrityl)-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino)uridine (18). As described in Exper. 15, with 16 (3.79 g, 6.93 mmol), 2-(4-nitrophenyl)ethyl carbonochloridate (1.76 g, 7.64 mmol) in dry pyridine (60 ml). Purification by FC (toluene/AcOEt 1:1, CHCl₃/MeOH 19:1): 4.43 g (87%) of 18. Amorphous solid. UV (MeOH): 266 (4.29), 235 (4.37). ¹H-NMR ((D₆)DMSO): 11.40 (s, NH); 8.19 (d, 2 H o to NO₂); 7.63 (d, H-C(6)); 7.54 (d, 2 H m to NO₂); 7.12-7.39 (m, 10 H, (MeO)₂Tr, NHnpeoc); 6.89 (m, 4 H o to MeO); 5.89 (d, H-C(1')); 5.63 (d, HO-C(3')); 5.41 (m, H-C(5)); 4.12-4.39 (m, H-C(2'), H-C(3'), OCH₂CH₂); 4.01 (m, H-C(4')); 3.72 (s, 2 MeO); 3.12-3.31 (m, 2 H-C(5')); 3.09 (t, OCH₂CH₂). Anal. calc. for C₃₉H₃₈N₄O₁₁ (738.76): C 63.58, H 5.20, N 7.60; found: C 63.16, H 5.43, N 7.77.
- 17. 2'-Deoxy-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino)uridine (19). A soln. of 18 in 6% TFA in CH₂Cl₂/MeOH 4:1 (50 ml) was stirred at r.t. for 3 h and then evaporated. The residue was washed several times with Et₂O and dried: 2.21 g (88%) of 19. Amorphous solid. UV (MeOH): 264 (4.21). ¹H-NMR ((D₆)DMSO):

- 11.33 (s, NH); 8.14 (d, 2 H o to NO₂); 7.88 (d, H-C(6)); 7.53 (d, 2 H m to NO₂); 6.98 (d, NHnpeoc); 6.65 (br. s, HO-C(5')); 5.87 (d, H-C(1')); 5.67 (d, H-C(5)); 5.35 (br. s, HO-C(3')); 4.18-4.20 (m, H-C(2'), OCH₂CH₂); 4.05 (m, H-C(3')); 3.88 (m, H-C(4')); 3.56 (m, 2 H-C(5')); 2.97 (t, OCH₂CH₂). Anal. calc. for $C_{18}H_{20}N_4O_6 \cdot H_2O$ (455.39): C 47.58, H 4.88, N 12.32; found: C 47.24, H 4.47, N 11.62.
- 18. 2'-Deoxy-2'-($\{[2-(4-nitrophenyl)ethoxy]carbonyl\}amino)-3',5'-bis-O-(trimethylsilyl)uridine (20). Dry 19 (136 mg, 0.312 mmol) and <math>O^6$ -[2-(4-nitrophenyl)ethyl]guanine (190 mg, 0.561 mmol) [36][37] were dissolved in MeCN (20 ml), and a cat. amount of (NH₄)₂SO₄ and HMDS (0.4 ml) were added. After refluxing for 1 h, a clear soln. was obtained, the soln. was evaporated *in vacuo*. The residue was dissolved again in dry MeCN (20 ml) and Me₃Si-Tf (90 mg, 74 µl, 0.406 mmol) was added. After refluxing for 3.5 h, the soln. was evaporated *in vacuo*, the residue dissolved in CHCl₃ and washed with sat. NaHCO₃ soln. (2 × 30 ml), dried (MgSO₄), and evaporated. The resulting residue was purified by FC (CHCl₃/MeOH 49:1, 19:1, 9:1): 68 mg (38%) of 20. Colorless foam. UV (MeOH): 264 (4.28). ¹H-NMR ((D₆)DMSO): 11.34 (s, NH); 8.12 (d, 2 H σ to NO₂); 7.79 (d, H-C(6)); 7.52 (d, 2 H σ to NO₂); 7.35 (d, NHnpeoc); 5.85 (d, H-C(1')); 5.68 (d, H-C(5)); 4.21-4.32 (m, H-C(2'), OCH₂CH₂); 4.16-4.18 (m, H-C(3')); 3.85 (m, H-C(4')); 3.63-3.72 (m, 2 H-C(5')); 2.95-3.00 (m, OCH₂CH₂); 0.20-0.10 (s, 2 Me₃Si). Anal. calc. for C₂₄H₃₆N₄O₉Si₂ (580.75): C49.64, H 6.25, N 9.65, C 50.27, H 6.25, N 10.16.
- 19. 2'-Deoxy-2'-({{2-(4-nitrophenyl)ethoxy|carbonyl}amino}-O^6-{2-(4-nitrophenyl)ethyl]}-N^2,3',5'-O-tris-(trimethylsilyl)guanosine (**21**). As described in Exper. 18, with **19** (100 mg, 0.229 mmol) and O^6 -{2-(4-nitrophenyl)ethyl]guanine (139 mg, 0.412 mmol) in dry MeCN (5 ml), HMDS (74 mg, 96 μ l, 0.458 mmol), and BSA (93 mg, 112 μ l, 0.458 mmol), refluxing for 1 h. After evaporation, the residue was dissolved in MeCN (15 ml) and Me₃Si-Tf (90 mg, 74 μ l, 0.312 mmol) was added and the mixture refluxed for 15 h. Purification by FC (CHCl₃/MeOH 49:1 and 19:1, CHCl₃/MeOH 9:1, CHCl₃/MeOH 4:11): 68 mg (35%) of **21**. Colorless foam. UV (MeOH): 275 (4.54), 253 (4.42). ¹H-NMR ((D₆)DMSO): 8.16 (d, 2 H o to NO₂); 8.05 (d, 2 H o to NO₂); 7.96 (d, H-C(8)); 7.61 (d, 2 H d to NO₂); 7.56 (d, NHnpeoc); 7.46 (d, 2 H d to NO₂); 6.51 (br. d, NH₂); 5.84 (d, H-C(1')); 4.81-4.83 (d, H-C(2')); 4.63-4.68 (d, OCH₂CH₂); 4.13-4.18 (d, H-C(3'), OCH₂CH₂); 3.85 (d, H-C(4')); 3.67 (d, 2 H-C(5')); 3.15-3.26 (d, OCH₂CH₂); 2.85-2.93 (d, OCH₂CH₂); 0.03-0.07 (d, 3 Me₃Si). Anal. calc. for C₃₆H₅₂N₈O₁₀Si₃ (841.11): C 51.41, H 6.23, N 13.32; found: C 51.31, H 5.85, N 13.33.
- 20. 2'-Deoxy-2'-({{2-(4-nitrophenyl)ethoxy|carbonyl}amino}-O^6-{2-(4-nitrophenyl)ethyl]guanosine} (22). A soln. of 19 (512 mg, 1.17 mmol), O^6 -[2-(4-nitrophenyl)ethyl]guanine (562 mg, 1.28 mmol) [36], HMDS (755 mg, 976 μl, 4.68 mmol), and (NH₄)₂SO₄ in dry MeCN (25 ml) was heated under reflux, until a clear soln. was obtained (1 h). Then Me₃Si-Tf (318 mg, 260 μl, 1.4 mmol) was added, and heating under reflux was continued for 4 h. To remove the Me₃Si groups, after evaporation *in vacuo*, the residue was dissolved in MeOH, and NH₄F (217 mg, 5.85 mmol) was added. The mixture was stirred for 2 min, then silica gel (3 g) was added and evaporated. Purification by FC (toluene/AcOEt 1:1, toluene/AcOEt 1:1 + 1 → 5% MeOH): 634 mg (85%) of 22. Colorless foam. UV (MeOH): 276 (4.43), 253 (4.33). ¹H-NMR ((D₆)DMSO): 8.16 (d, 2 H σ to NO₂); 8.08 (d, 2 H σ to NO₂); 7.98 (s, H-C(8)); 7.61 (d, 2 H σ to NO₂); 7.45 (d, 2 H σ to NO₂); 7.17 (d, NHnpeoc); 6.46 (br. s, NH₂); 5.80 (d, H-C(1')); 5.60 (d, HO-C(3')); 5.19 (t, HO-C(5')); 4.57-4.75 (m, H-C(2'), OCH₂CH₂); 4.09-4.14 (m, H-C(3'), OCH₂CH₂); 3.92 (m, H-C(4')); 3.55 (m, 2 H-C(5')); 3.25 (t, OCH₂CH₂); 2.92 (t, OCH₂CH₂). Anal. calc. for C₃6H₅₂N₈O₁₀Si₃· H₂O (654.59): C 51.38, H 4.62, N 17.12; found: C 51.11, H 4.68, N 16.46.
- 21. 2'-Deoxy-2'-({[2-(4-nitrophenyl) ethoxy|carbonyl}amino}-O^o-[2-(4-nitrophenyl)ethyl]-3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,2-diyl)guanosine (23). To soln. of 22 (811 mg, 1.27 mmol) in dry pyridine (10 ml), 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane was added and stirred overnight. After evaporation, the residue was purified by FC (toluene/AcOEt 1:1, toluene/AcOEt 1:1 + 1% MeOH): 790 mg (73%) of 23. Colorles foam. UV (MeOH): 275 (4.42), 255 (4.32). 1 H-NMR ((D₆)DMSO): 8.03-8.21 (1s, 2d, H-C(8), 4 H o to NO $_2$); 7.59 (d, 2 H o to NO $_2$); 7.51 (d, NHnpeoc); 7.45 (d, 2 H o to NO $_2$); 6.46 (br. s, NH $_2$); 5.78 (d, H-C(1')); 4.61-4.79 (d, H-C(2'), OCH $_2$ CH $_2$); 4.50 (d, H-C(3')); 4.12 (d, OCH $_2$ CH $_2$); 3.89 (d, 2 H-C(5'), H-C(4')); 3.25 (d, OCH $_2$ CH $_2$); 2.92 (d, OCH $_2$ CH $_2$); 0.78-1.13 (d, 2 (Me $_2$ CH $_2$ Si). Anal. calc. for C $_3$ 6 H $_5$ 4 N $_8$ O $_1$ 1 Si $_2$ · 1/22 H $_2$ O (8.76.09): C 53.47, H 6.33, N 12.79; found: C 53.92, H 6.52, N 12.04.
- 22. 2'-Deoxy-N²-{[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino}-O⁶-[2-(4-nitrophenyl)ethyl]-3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)guanosine (24). As described in Exper. 15, with 23 (800 mg, 0.914 mmol), 2-(4-nitrophenyl)ethyl carbonodichloridate (1.05 g, 4.57 mmol), and molecular sieve in dry pyridine (25 ml, vigorously stirred at 0° for 30 min; r.t., 3 d). Purification by FC (toluene/AcOEt 1:1): 685 mg (70 %) of 24. Colorless foam. UV (MeOH): 268 (4.57), 213 (4.62). ¹H-NMR ((D₆)DMSO): 10.33 (s, NHnpeoc); 8.36 (s, H-C(8)); 8.02-8.19 (d, 4 H m to NO₂); 7.41-7.65 (d, 4 H m to NO₂, NHnpeoc); 5.86 (d, H-C(1')); 4.71-4.89 (m, H-C(2'), H-C(3'), OCH₂CH₂); 4.32 (t, OCH₂CH₂); 4.16 (t, OCH₂CH₂); 3.83-4.11 (m, 2 H-C(5'), H-C(4')); 3.29 (t, OCH₂CH₂); 3.12 (t, OCH₂CH₂); 2.92 (t, OCH₂CH₂); 0.81-1.12

- $(m, 2 \text{ (Me}_2\text{CH)}_2\text{Si})$. Anal. calc. for $\text{C}_{48}\text{H}_{61}\text{N}_6\text{O}_{15}\text{Si}_2$ (1060.24): C 54.38, H 5.80, N 11.89; found: C 54.82, H 5.89, N 11.66
- 23. 2'-Deoxy-N²-{ $\{2$ -(4-nitrophenyl)ethoxy}carbonyl}-2'-($\{[2$ -(4-nitrophenyl)ethoxy}carbonyl}amino)-O⁶- $\{2$ -(4-nitrophenyl)ethyl $\}$ guanosine (**25**). To a soln. of **24** (200 mg, 0.187 mmol) in dry THF (5 ml), Bu₄NF · 3H₂O (129 mg, 0.412 mmol) and AcOH (239 mg, 227 µl, 4.12 mmol) were added. After stirring for 3 d, the soln. was diluted with AcOEt and washed twice with sat. NaHCO₃ soln., dried, and evaporated *in vacuo*. The residue was purified by FC (CHCl₃/MeOH 49:1, CHCl₃/MeOH 19:1, toluene/AcOEt 1:1 + 1 % MeOH): 119 mg (78 %) of **25**. Colorless foam. UV (MeOH): 268 (4.64), 213 (4.67). 1 H-NMR ((D₆)DMSO): 10.33 (s, N 2 Hnpeoc); 8.34 (s, H-C(8)); 7.98-8.19 (s, 4 H s to NO₂); 7.35-7.61 (s, 4 H s to NO₂); 7.15 (s, N 2 Hnpeoc); 5.91 (s, H-C(1')); 5.59 (s, HO-C(3')); 5.01 (s, HO-C(5')); 4.68-4.83 (s, H-C(2'), OCH₂CH₂); 4.32 (s, OCH₂CH₂); 4.28 (s, H-C(3')); 4.16 (s, OCH₂CH₂); 3.98 (s, H-C(4')); 3.49-3.71 (s, 2 H-C(5')); 3.26 (s, OCH₂CH₂); 3.12 (s, OCH₂CH₂); 2.92 (s, OCH₂CH₂). Anal. calc. for C₃₂H₃₅N₉O₁₄·H₂O (847.75): C 52.32, H 4.40, N 14.87; found: C 52.45, H 4.42, N 14.89.
- 24. 2'-Deoxy-5'-O-(4,4'-dimethoxytrityl)-N²-{[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-({
- 25. 3,5-O-(1,1,3,3-Tetraisopropyldisiloxane-1,3-diyl-9-{2-O-[(trifluoromethyl)sulfonyl]-β-D-arabinofurano-syl]-adenine (27) [32][38]. A soln. of 9-[3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl-β-D-arabinofuranosyl]-adenine [32][38] (10 g. 19.6 mmol) and DMAP (7.2 g. 58.5 mmol) in dry CH₂Cl₂ (140 ml) was cooled under N₂ to -30° to -50° . After stirring for 30 min, diluted trifluoromethanesulfonyl anhydride (Tf₂O; 6.96 g. 4 ml, 24.5 mmol in CH₂Cl₂ (5 ml)) was dropped slowly to the soln. Stirring was continued for 15 min, and the mixture was allowed to reach r.t. and stirred further for 30 to 45 min. The mixture was poured into ice-water (250 ml), washed with sat. NaHCO₃ soln. (200 ml), brine (200 ml), and CH₂Cl₂ (90 ml). The combined org. layers were dried (MgSO₄), filtered, and evaporated *in vacuo*. Purification by FC (CHCl₃/MeOH 49:1): 11.7 g (93%) of 27. Colorless foam. UV (MeOH): 258 (4.15). ¹H-NMR ((D₆)DMSO): 8.29-8.07 (2s, H-C(8), H-C(2)); 7.46 (br. s, NH₂); 6.47 (d, H-C(1')); 6.05 (t, H-C(2')); 5.65 (t, H-C(3')); 4.11-4.21 (m, H-C(4')); 3.82-4.01 (m, 2 H-C(5')); 0.83-1.18 (m, 2 (Me₂CH)₂). Anal. calc. for C₂₃H₃₈F₃N₅O₇SSi₂ (641.80): C 43.04, H 5.97, N 10.91; found: C 43.06, H 5.92, N 10.40.
- 26. 2'-Azido-2'-deoxy-3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl) adenosine (28) [32]. To a soln. of 27 (1.7 g, 2.69 mmol) in dry DMF (80 ml), LiN₃ [51] (656 mg, 13.4 mmol) was added. After stirring at r.t. for 2 h, the mixture was poured into ice-water (150 ml), diluted with AcOEt (100 ml), and washed several times with brine (100 ml). The combined org. layers were dried (MgSO₄) and evaported *in vacuo*: 1.28 g (90%) of 28. Colorless foam. UV (MeOH): 258 (4.19). IR (CH₂Cl₂). 2121. ¹H-NMR ((D₆)DMSO): 8.05, 8.22 (2s, H-C(8), H-C(2)); 7.39 (s, NH₂); 5.81 (d, H-C(1')); 5.44 (dd, H-C(3')); 5.00 (d, H-C(2')); 3.85-4.12 (m, 2 H-C(5'), H-C(4')); 0.89-1.21 (m, 2 (Me₂CH)₂Si). Anal. calc. for $C_{22}H_{38}N_8O_4Si_2 \cdot 1/2$ AcOEt (566.81): C 48.81, H 7.47, N 19.77; found: C 48.21, H 7.04, N 19.73.
- 27. 2'-Amino-2'-deoxy-3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl) adenosine (29) [32]. 27.1. Radical Reduction. To a soln. of 28 (200 mg, 0.374 mmol) in dry toluene (5 ml), Bu₃SnH (248 μ l, 272 mg, 0.935 mmol) was added dropwise via a syringe. The mixture was stirred for 15 min under N₂. Then, a cat. amount of AIBN was added and the mixture heated under reflux for 90 min. For the workup, the mixture was evaporated in vacuo, dissolved in H₂O/AcOEt and washed with AcOEt (20 ml), sat. NaHCO₃ soln. (20 ml), and AcOEt (20 ml). The combined org. layers were dried (MgSO₄), evaporated, and the resulting residue was purified by FC (CHCl₃/MeOH 19:1): 157 mg (82%) of 29.
- 27.2. Staudinger *Reduction* [30][31]. To a soln. of **28** (1.63 g, 3 mmol) in dry THF (80 ml), PPh₃ (1 g, 3.96 mmol) was added. The mixture was stirred for 7 h at r.t., finally $\rm H_2O$ was added and stirring continued overnight. For workup, the soln. was evaporated, dissolved in AcOEt, dried (MgSO₄), and evaporated. The crude product was purified by FC (CH₂Cl₂/MeOH 19:1, 9:1): 1.44 g (94%) of **29**.

27.3. Staudinger Reduction with PPH₃ in Dioxane/Pyridine [25]. A mixture of **28** (11.6 g, 21.7 mmol) and PPh₃ (17 g, 65 mmol) in pyridine (250 ml), aq. ammonia (250 ml), and dioxane (70 ml) was stirred at r.t. for 24 h and evaporated in vacuo. The resulting residue was dissolved in AcOEt, dried (MgSO₄), and purified by FC (CHCl₃/MeOH 19:1, 9:1, 4:1): 4.3 g (39%) of **29** and 4.4 g (40%) of **30**.

Data of 29. Colorless foam. UV (MeOH): 259 (4.16). 1 H-NMR ((D₆)DMSO): 8.23, 8.07 (2s, H–C(8), H–C(2)); 7.29 (br. s, NH₂); 5.72 (d, H–C(1')); 4.81 (d, H–C(3')); 3.88–4.01 (m, H–C(4'), 2 H–C(5'), H–C(2')); 2.10 (br. s, NH₂); 0.89 -1.13 (m, 2 (Me₂CH)₂). Anal. calc. for C₂₂H₄₀N₆O₄Si₂ (508.77): C 51.94, H 7.92, N 16.52; found: C 48.50, H 7.99, N 16.53.

Data of 30. Amorphous solid. UV (MeOH): 258 (4.18). 1 H-NMR ((D₆)DMSO): 8.21, 8.10 (s, H-C(8), H-C(2)); 7.26 (br. s, NH₂); 6.09 (s, HO-C(5)); 5.71 (d, H-C(1')); 5.49 (br. s, SiOH); 3.78-4.11 (m, H-C(4'), 2 H--C(5'), H-C(2'), H-C(3')); 1.98 (br. s, NH₂); 0.89-1.13 (m, 2 (Me₂CH)₂). Anal. calc. for $C_{22}H_{42}N_6O_4Si_2\cdot \frac{1}{2}H_2O$ (528.79): C 49.97, H 8.39, N 15.89; found: C 50.11, H 7.81, N 15.66.

28. 2'-Deoxy-N\[6-\{[2-(4-nitrophenyl)ethoxy]carbonyl\}-2'-(\{[2-(4-nitrophenyl)ethoxy]carbonyl\}amino)-3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)adenosine (31) and 2'-Deoxy-2'-(\{[2-(4-nitrophenyl)ethoxy]carbonyl\}amino)-3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)adenosine (32). As described in Exper. 15, with 29 (2 g. 3.9 mmol), 2-(4-nitrophenyl)ethyl carbonochloridate (3.6 g, 11.7 mmol), molecular sieve (4 Å), and a cat. amount of DMAP in dry CH₂Cl₂ (60 ml; carefully stirred at r.t. for 3 d). Purification by FC (toluene/AcOEt 1:1, toluene/AcOEt 1:1 + 1\[6-\) MeOH): 31 was eluted first: 3 g (86\[6-\)); then 32: 219 mg (8\[6-\)).

Data of **31**: Colorless foam. UV (MeOH): 266 (4.56), 277 (sh, 4.51). 1 H-NMR ((D₆)DMSO): 10.64 (br. s, NH₂); 8.63, 8.54 (2s, H–C(8), H–C(2)); 8.10–8.16 (m, 2d, 4 H σ to NO₂); 7.66 (d, NHnpeoc); 7.59 (d, 2 H m to NO₂); 7.49 (d, 2 H m to NO₂); 5.98 (d, H–C(1')); 4.81–4.98 (m, H–C(2'), H–C(3')); 4.38 (t, OCH₂CH₂); 4.12 4.82 (m, OCH₂CH₂); 3.82–4.01 (m, H–C(4'), 2 H–C(5')); 3.10 (t, OCH₂CH₂); 2.79 (t, OCH₂CH₂); 0.78–1.13 (m, (Me₂CH)₂). Anal. calc. for C₄₀H₅₄N₈O₁₂Si₂ (895.09): C 53.68, H 6.08, N 12.52; found: C 53.16, H 6.16, N 12.21.

Data of 32: Colorless foam. UV (MeOH): 261 (4.36). 1 H-NMR ((D₆)DMSO): 8.07–8.31 (d, 2s, H-C(2), H-C(8), 2 H o to NO₂); 7.63 (d, NHnpeoc); 7.50 (d, 2 H o to NO₂); 7.35 (br. s, NH₂); 5.87 (d, H-C(1')); 4.73 5.94 (s, H-C(2')); 4.12–4.28 (o, 2 H-C(5')); 3.84–3.98 (o, H-C(3'), H-C(4'), OCH₂CH₂); 2.79 (o, OCH₂CH₂); 0.75–1.35 (o, (Me₂CH)₂Si). Anal. calc. for C₃₁H₄₇N₇O₈Si₂ (701.93): C 53.05, H 6.75, N 13.97; found: C 52.45, H 6.74, N 13.38.

29. 2'-Deoxy-N⁶-{[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino}-adenosine (33). As described in Exper. 23, with 31 (3 g, 3.35 mmol), AcOH (2.01 g, 1.9 ml, 33.5 mmol), and Bu₄NF·3H₂O (2.6 g, 8.38 mmol) in dry THF (75 ml); stirring at r.t. for 16 h; dilution with AcOEt (100 ml), extraction with H₂O (100 ml), sat. NaHCO₃, brine (75 ml), and AcOEt (75 ml), dried. Purification by FC (toluene/AcOEt 1:1, toluene/AcOEt/MeOH 5:4:1): 2.25 g (quant.) of 33. UV (MeOH): 266 (4.62). ¹H-NMR ((D₆)DMSO): 10.61 (s, NHnpeoc); 8.60 (2s, H-C(2), H-C(8)); 8.06-8.19 (2d, 4 H o to NO₂); 7.59, 7.44 (2d, 4 H o to NO₂); 7.25 (d, NHnpeoc); 6.04 (d, H-C(1')); 5.70 (d, HO-C(3')); 5.21 (t, HO-C(5')); 4.82-4.98 (m. H-C(2')); 4.38 (t, OCH₂CH₂); 4.23 (m, H-C(3')); 4.08 (t, OCH₂CH₂); 4.01 (m, H-C(4')); 3.50-3.72 (m. 2 H-C(5')); 3.06-3.17 (t, OCH₂CH₂); 2.75-2.98 (t, OCH₂CH₂). Anal. calc. for C₂₈H₂₈N₈O₁₁· ¹/₂ H₂O (661.69): C 50.84, H 4.42, N 16.96; found: C 50.79, H 4.59, N 16.80

30. 2'-Deoxy-5'-O-(4,4'-dimethoxytrityl)-N⁶-{[2-(4-nitrophenyl)ethoxy}carbonyl}-2'-(

31. 2'-Deoxy-N⁴-{[2-(4-nitrophenyl)ethoxy]carbonyl-5'-O-(4-methoxytrityl)}-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino)cytidine 3'-[2-(4-Nitrophenyl)ethyl Diisopropylphosphoramidite] (35). To a soln. of 12 (500 mg, 0.555 mmol) in dry MeCN (5 ml), 2-(4-nitrophenyl)ethyl tetraisopropylphosphorodiamidite (441 mg, 1.11 mmol) [39] and a cat. amount of 1*H*-tetrazole (19 mg, 0.28 mmol) were added under N₂. After stirring at r.t. for 15 h, the mixture was diluted with CHCl₃ (25 ml), washed with sat. NaHCO₃ soln. (2 × 25 ml) and brine (25 ml). The org. layer was dried (MgSO₄), evaporated *in vacuo*, and purified by FC (petroleum ether/acetone 4:1, 3:1, 2:1, 1:1): 440 mg (66%) of 35. Colorless foam. UV (MeOH): 269 (4.1), 236 (4.9). ¹H-NMR ((D₆)DMSO): 10.87 (s, NHnpeoc); 8.04 8.16 (m, H-C(6), 6 H o to NO₂); 7.12 - 7.84 (m, 19 H, MeOTr, H-C(5), 6 H m to

- NO₂); 6.86 (*d*, 2 H σ to MeO); 5.96 (*d*, H-C(1')); 4.14-4.37 (2*m*, 3 OCH₂CH₂, H-C(2'), H-C(3')); 3.83 (*m*, H-C(4')); 3.70 (*s*, MeO); 3.07-3.23 (*m*, 2 H-C(5')); 2.85-3.04 (2*m*, 2 OCH₂CH₂); 2.80-2.83 (*m*, OCH₂CH₂); 0.89-1.12 (*m*, 2 Me₂CH). ³¹P-NMR ((D₆)DMSO): 150.96; 150.19. Anal. calc. for C₆₁H₆₅N₈O₁₆P + $\frac{1}{3}$ 3 CHCl₃ (1236.57): C 59.54, H 5.32, N 9.06; found: C 60.11, H 5.41, N 8.61.
- 32. 2'-Deoxy-N⁴-{[2-(4-nitrophenyl)ethoxy]carbonyl-5'-O-(4,4'-dimethoxytrityl)]-2'-($\{[2-(4-nitrophenyl)ethoxy]carbonyl\}$ amino) cytidine 3'-[2-(4-Nitrophenyl)ethyl Diisopropylphosphoramidite] (36). To a soln. of 13 (500 mg, 0.555 mmol), 2-(4-nitrophenyl)ethyl tetraisopropylphosphorodiamidite (427 mg, 1.07 mmol) in dry MeCN (5 ml), a 0.5M pyridine hydrochloride soln. (0.54 ml) was added under N₂, and the mixture was stirred at r.t. for 15 h. The mixture was evaporated *in vacuo*, dissolved in CHCl₃, washed with sat NaHCO₃ soln., and brine, and dried (MgSO₄). After evaporation, the crude product was purified by FC (toluene/AcOEt 2:1, 1:1): 467 mg (75%) of 36. Colorless foam. UV (MeOH): 268 (4.46), 238 (4.22). ¹H-NMR ((D₆)DMSO): 10.87 (s, NHnpeoc); 8.04-8.16 (m, H-C(6), 6 H o to NO₂); 7.12-7.84 (m, 17 H, (MeO)₂ Tr, H-C(5), 6 H m to NO₂, NHnpeoc); 6.86 (d, 4 H o to MeO); 5.96 (d, H-C(1')); 4.14-4.37 (2m, 3 OCH₂CH₂, H-C(2'), H-C(3')); 3.83 (m, H-C(4')); 3.70 (s, 2 MeO); 3.07-3.23 (m, 2 H-C(5')); 3.85-3.04 (2m, 2 OCH₂CH₂); 2.80-2.83 (m, OCH₂CH₂); 0.89-1.12 (m, 2 Me₂CH). ³¹P-NMR ((D₆)DMSO 161.7 MHz): 151.79; 151.39. Anal. calc. for C₆₁H₆₇N₈O₁₇P · 1 /2 AcOEt (1287.29): C 59.72, H 5.56, N 8.70; found: C 59.66, H 5.62, N 9.20.
- 33. 2'-Deoxy-5'-O-(4-methoxytrityt)-2'-({[2-(4-nitrophenyl)ethoxy]carbonyl}amino)uridine 3'-[2-(4-Nitrophenyl)ethyl Diisopropylphosphoramidite] (37). As described in Exper. 31, with 17 (810 mg, 1.14 mmol), 2-(4-nitrophenyl)ethyl tetraisopropylphosphorodiamidite (910 mg, 2.29 mmol) [39] and 1*H*-tetrazole (40 mg, 0.57 mmol) in dry MeCN (7.5 ml), stirring at r.t. for 15 h. Purification by FC (toluene/AcOEt 2:1, toluene/AcOEt 1:1): 909 mg (79%) of 37. Colorless foam. UV (MeOH): 265 (4.45), 232 (4.35). ¹H-NMR ((D₆)DMSO): 11.45 (s, NH); 7.29 (m, 4 H o to NO₂); 7.66 (m, H-C(6)); 7.12-7.49 (m, 17 H, MeOTr, 4 H m to NO₂, NHnpeoc); 6.87 (d, 2 H o to MeO); 5.87 (m, H-C(1')); 5.47 (m, H-C(5)); 3.99-4.95 (m, H-C(2'), H-C(3'), H-C(4'), 2 OCH₂CH₂); 3.71 (s, MeO); 2.85-3.21 (m, 2 OCH₂CH₂, 2 H-C(5')); 0.91-0.94 (m, 2 Me₂CH). ³¹P-NMR (CDCl₃): 148.65; 148.18. Anal. calc. for C₅₂H₅₇N₆O₁₃P (1005.04): C 62.14, H 5.72, N 8.36; found: C 62.23, H 5.80, N 8.38.
- 34. 2'-Deoxy-5'-O-(4,4'-dimethoxytrityl)-2'-({{2-(4-nitrophenyl)ethoxy}carbonyl}amino)uridine 3'-{2-(4-Nitrophenyl)ethyl Diisopropylphosphoramidite} (38). As described in Exper. 32, with 18 (1 g, 1.35 mmol), 2-(4-nitrophenyl)ethyl tetraisopropylphosphorodiamidite (1.07 g, 2.70 mmol) in dry MeCN (10 ml), 0.5M pyridine hydrochloride soln. (1.35 ml) [40]; stirring at r.t. for 15 h. Purification by FC (toluene/AcOEt 2:1, toluene/AcOEt 1:1): 1.26 g (90%) of 36. Colorless foam. UV (MeOH): 261 (4.03), 234 (4.36). ¹H-NMR ((D₆)DMSO): 11.41 (s, NH); 8.02-8.20 (m, 4 H o to NO₂); 7.63 (d, H-C(6)); 7.54 (d, 4 H m to NO₂); 7.09-7.39 (m, 10 H, (MeO)₂Tr, NHnpeoc); 6.86 (m, 4 H o to OMe): 5.89 (d, H-C(1')); 5.43 (m, H-C(5)); 4.12-4.39 (m, H-C(2'), H-C(3'), H-C(4'), 2 OCH₂CH₂); 3.72 (s, 2 MeO); 2.75-3.45 (4m, 2 OCH₂CH₂, 2 H-C(5')); 0.91-0.94 (m, 2 Me₂CH). ³¹P-NMR ((D₆)DMSO): 148.74, 148.34. Anal. calc. for C₅₃H₅₉N₆O₁₄P (1035.67): C 61.47, H 5.74, N 8.11; found: C 61.74, H 5.88, N 8.18.
- 35. 2'-Deoxy-5'-O-(4.4'-dimethoxytrityl)-N²-{{2-(4-nitrophenyl)ethoxy}carbonyl}-2'-({{2-(4-nitrophenyl)ethoxy}carbonyl}-2'-({{2-(4-nitrophenyl)ethoxy}carbonyl}-2'-({{2-(4-nitrophenyl)ethoxy}carbonyl}-2'-({{2-(4-nitrophenyl)ethyl}guanosine 3'-{2-(4-Nitrophenyl)ethyl} Diisopropylphosphoramidite} (39). As described in Exper. 32, with 26 (184 mg, 0.164 mmol), 2-(4-nitrophenyl)ethyl tetraisopropylphosphorodiamidite (130 mg, 0.329 mmol) stirring at r.t. for 15 h. Purification by FC (toluene/AcOEt 2:1, 1:1): 157 mg (67%) of 39. Colorless foam. UV (MeOH): 269 (4.64), 236 (4.35). ¹H-NMR ((D₆)DMSO): 10.23 (d, NHnpeoc); 8.01-8.28 (m, 8 H o to NO₂, H-C(8)); 7.09-7.72 (m, 18 H, (MeO)₂Tr, NHnpeoc, 8 H m to NO₂); 6.63 (m, 4 H o to MeO); 6.02 (m, H-C(1')); 5.12 (m, H-C(2')); 4.78 (m, OCH₂CH₂); 4.55 (m, H-C(3')); 4.39 (m, OCH₂CH₂); 4.12 (m, 2OCH₂CH₂); 3.82 (m, H-C(4')); 3.65 (m, 2 H-C(5'), 2 MeO); 3.31 (m, OCH₂CH₂); 3.08 (m, OCH₂CH₂); 2.81 (t, OCH₂CH₂); 0.82-0.99 (m, 2 Me₂CH). ³¹P-NMR (CDCl₃): 152.15; 151.57. Anal. calc. for C₇₁H₇₃N₁₁O₁₉P (1415.41): C 60.25, H 5.20, N 10.89; found: C 60.16, H 5.48, N 10.30.
- 36. 2'-Deoxy-5'-O-(4,4'-dimethoxytrityl)-No-{[2-(4-nitrophenyl)ethoxy]carbonyl}-2'-([2-(4-nitrophenyl)ethoxy]carbonyl}-2'-([2-(4-nitrophenyl)ethoxy]carbonyl]-2'-([2-(4-nitrophenyl)ethoxy]carbonyl]-2'-([2-(4-nitrophenyl)ethyl)ethyl)ethyl Diisopropylphosphoramidite] (40). 36.2. IH-Tetrazole Activation. As described in Exper. 31, with 30 (500 mg, 0.523 mmol), 2-(4-nitrophenyl)ethyl tetraisopropylphosphorodiamidite (416 mg, 1.00 mmol) and 1H-tetrazole (18 mg, 0.262 mmol) in dry MeCN (20 ml), stirring at r.t. for 15 h. Purification by FC (petroleum/acetone 4:1 to 1:1): 503 mg (77%) of 40.
- 36.2. Pyridine-Hydrochloride Activation. As described in Exper. 32, with **30** (714 mg, 0.748 mmol), 2-(4-nitrophenyl)ethyl tetraisopropylphosphorodiamidite (568 mg, 1.428 mmol) and 748 μ l of a 0.5 μ pyridine hydrochloride soln. in MeCN (7 ml); stirring at r.t. for 15 h. Purification by FC (toluene/AcOEt 1:1): 777 mg (83%) of **40**. Colorless foam. UV (MeOH): 273 (4.63), 267 (4.66), 237 (4.48). H-NMR ((D₆)DMSO): 10.61 (μ , NHnpeoc); 8.49 (μ , H-C(8), H-C(2)); 8.08 8.28 (3 μ , 6 H μ to NO₂); 7.58 (μ , NHnpeoc); 7.16 7.46 (μ , 15 H, (MeO)₂ μ , 6 H μ to NO₂); 6.79 (μ , 4 H μ to MeO); 6.08 6.12 (μ , H-C(1')); 5.12 5.29 (μ , H-C(2')); 4.42 4.61 (μ , H-C(3'));

- 4.32-4.40 (m, OC H_2 CH $_2$); 4.04-4.26 (m, 2 OC H_2 CH $_2$, H-C(4')); 3.68 (s, 2 MeO); 3.39-3.49 (m, 2 H-C(5')); 3.14 (t, OCH $_2$ CH $_2$); 2.76-2.98 (m, 2 OCH $_2$ CH $_2$); 0.88-1.12 (m, 2 Me $_2$ CH). 31 P-NMR (CDCl $_3$): 150.53; 150.99. Anal. calc. for C $_{63}$ H $_{67}$ N $_{10}$ O $_{16}$ P (1251.54): C 60.47, H 5.40, N 11.19; found: C 60.37, H 5.44, N 11.11.
- 37. 3'-O-(3-Carboxypropanoyl)-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)-N⁶- $\{2$ -(4-nitrophenyl)ethoxy]carbonyl}-2'- $(\{2$ -(4-nitrophenyl)ethoxy]carbonyl}-2'- $(\{2$ -(4-nitrophenyl)ethoxy]carbonyl}-2'- $(\{2$ -(4-nitrophenyl)ethoxy]carbonyl}-2'- $(\{2$ -(4-nitrophenyl)ethoxy]carbonyl}-2'- $(\{2$ -(4-nitrophenyl)ethoxy]carbonyl}-(2-(4-(4-(4)
- 38. 2'-[(3-Carboxypropanoyl)amino]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)adenosine (42). To a soln. of 41 (100 mg. 0.101 mmol) in dry pyridine (8 ml), DBU (616 mg, 4 mmol) was added, and the mixture was stirred at r.t. for 2 d. After neutralization with AcOH (240 mg, 4 mmol), the soln. was diluted with CHCl₃ and dropped slowly into Et₂O. The precipitate was filtered and dried: 36 mg (53%) of 42. Amorphous solid. UV (MeOH): 260 (4.02), 228 (4.24). ¹H-NMR ((D₆)DMSO): 8.21 (d, NH); 8.01, 8.18 (2s, H-C(8), H-C(2)); 7.17-7.49 (m, 9 H, (MeO)₂Tr); 6.31 (d, 4 H o to MeO); 5.98 (d, H-C(1')); 5.78 (br. s, HO-C(3')); 5.15-5.28 (m, H-C(2')); 4.39 (m, H-C(3')); 4.12 (m, H-C(4')); 3.73 (s, 2 MeO); 3.21-3.38 (m, 2 H-C(5')); 2.26-2.42 (m, OCCH₂CH₂CO). Anal. calc. for $C_{35}H_{36}N_6O_8 \cdot 2 H_2O$ (704.74): C 59.65, H 5.72, N 11.92; found: C 59.40, H 5.73, N 11.46.
- 39. Solid-Support Material 43 from 500-Å LCAMA-CPG. A mixture of 41 (16 mg, 16 μ mol), 500-Å LCAMA-CPG (100 mg), [11][12][17], TOTU (6 mg, 18 μ mol) and N-methylmorpholine (5 μ l, 45 μ mol), in dry MeCN (3 ml) was gently shaken for 3 h. The CPG material was collected in a glass funnel and washed with MeOH, DMF, pyridine, MeOH, acetone, and Et₂O, and then dried. Determination of loading: A defined amount of 43 (6 mg) was treated in a 10-ml calibrated flask with 0.2M TsOH in MeCN (10 ml). After 1 min, the absorbance at 498 nm was measured against 0.2M TsOH in MeCN. The loading L [μ mol/g] can be calculated by the formula $L = A \times 10 \times 14.4/m$ (A = absorbance at 498 nm; m weight of CPG material 43 in mg) and gave for 43: $L = 14 \mu$ mol/g.
- 40. Assembly of Oligonucleotides. Syntheses were carried out using an Applied Biosystems 392 DNA/RNA synthesizer. Nucleoside-functionalized CPG [17][43] material was packed into a small ABI column, and cycles of nucleotide addition were carried out by programmed series of reagent and solvent washes based on recommended procedures with the following main steps. 1) 5'-O-(MeO)₂Tr-deprotection in 135 s; the eluate from this step was collected and the absorbance at 498 nm measured to determined the condensation yields. 2) Coupling: 0.1m phosphoramidite and 0.5m activation reagent in dry MeCN, delivered in alternating reagent pushes with a subsequent waiting time (see Table 1). 3) Capping: Ac₂O/2,6-dimethylpyridine/THF 11:8 and 1-methyl-1*H*-imidazole/THF 16:84, delivered in one 10-s push with a subsequent wait time of 5 s. 4) Oxidation: 0.05m I₂ in THF/pyridine/H₂O 7:2:1, delivered in one 10-s push with a subsequent waiting time of 15 s. Then, a cleavage programme was carried out: 1) Cleavage of the base-protecting groups: 1m DBU in MeCN delivered in several pushes and following waiting steps (total wait time: 12 h). 2) Cleavage from the support: conc. NH₃ soln. delivered in one push with a consecutive wait time of 4 × 2400 s (total waiting time 2.5 h). The reaction soln., containing only the oligonucleotide and NH₃, was collected and, after determination of the isolated amount of oligonucleotide by measurement of the absorbance at 260 nm, lyophilized in a Speed-vac concentrator under high vacuum.
- 41. Melting Curves. Absorbance vs. temp. curves were measured at 260 nm in Na₂HPO₃/NaH₂PO₄ buffer at pH 7.0; Na⁺ conc. 0.15m, 0.3m, 0.12m, and 0.024m.

REFERENCES

- E. I. Kvasyuk, T. I. Kulak, O. V. Tkachenko, S. L. Sentyureva, I. A. Mikhailopulo, R. J. Suhadolnik, E. E. Henderson, S. E. Horwath, N.-X. Guan, W. Pfleiderer, Helv. Chim. Acta 1998, 81, 1278.
- [2] E. Uhlmann, A. Peyman, Chem. Rev. 1990, 90, 543.
- [3] N. T. Thoung, C. Hélène, Angew. Chem. 1993, 105, 697.
- [4] J. Engels, Nachr. Chem. Techn. Lab. 1991, 39, 1250.

- [5] H. Ionoue, Y. Hayase, A. Imura, S. Iwai, K. Miura, E. Ohtsuka, Nucleic Acids Res. 1987, 15, 4403.
- [6] W. Pieken, D. B. Olsen, F. Benseler, H. Aurup, F. Eckstein, Science 1991, 253, 314.
- [7] J. Hobbs, H. Sternbach, M. Sprinzl, F. Eckstein, Biochemistry 1973, 12, 5138.
- [8] G. Paolella, B. S. Sproat, A. I. Lammond, EMBO J. 1992, 11, 1913.
- [9] D. B. Olsen, F. Benseler, H. Aurup, W. Pieken, F. Eckstein, Biochemistry 1991, 30, 9735.
- [10] D. M. Williams, W. A. Pieken, F. Eckstein, Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 918.
- [11] K. P. Stengele, W. Pfleiderer, Nucleic Acids Res. Symp. Ser. 1989, 21, 101.
- [12] K. P. Stengele, Tetrahedron Lett. 1990, 31, 2549.
- [13] F. Himmelsbach, Ph. D. Thesis, University of Konstanz, 1984.
- [14] A. Rösler, Diploma Thesis, University of Konstanz, 1991.
- [15] U. Witt, Diploma Thesis, University of Konstanz, 1994.
- [16] E. I. Kvasyuk, T. I. Kulak, I. A. Mikhailopulo, R. Charubala, W. Pfleiderer, Helv. Chim. Acta 1995, 78, 1777.
- [17] K. P. Stengele, Ph. D. Thesis, University of Konstanz, 1991.
- [18] W. Pfleiderer, K. P. Stengele, F. Bergmann, M. Resmini, Nucleosides, Nucleotides 1995, 14, 843.
- [19] G. Walcher, W. Pfleiderer, Helv. Chim. Acta 1996, 79, 1067.
- [20] J. P. H. Verheyden, D. Wagner, J. G. Moffatt, J. Org. Chem. 1971, 36, 250.
- [21] K. K. Ogilvie, D. P. C. McGee, S. M. Biesvert, G. H. Hakimelahi, Z. A. Proba, Can. J. Chem. 1983, 61, 1204.
- [22] J. F. Codington, I. L. Doerr, J. J. Fox, J. Org. Chem. 1964, 29, 558.
- [23] A. Hampton, A. W. Nichol, Biochemistry 1966, 6, 2076.
- [24] L. G. Kutnesova, E. A. Romanova, E. M. Volkov, V. N. Tashlitsky, T. S. Ortskaya, N. F. Krynetskaya, Z. A. Shabarova, J. Bioorg. Chem. (Moscow) 1993, 19, 455.
- [25] A. V. Azhaev, A. M. Ozols, A. S. Bushnev, Nucleic Acids Res. 1979, 6, 625.
- [26] F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, Tetrahedron 1984, 40, 59; W. Pfleiderer, F. Himmelsbach, R. Charubala, H. Schirmeister, A. Beiter, B. S. Schulz, T. Trichtinger, Nucleosides, Nucleotides 1985, 4, 81.
- [27] H. Schirmeister, W. Pfleiderer, Helv. Chim. Acta 1993, 93, 385.
- [28] K. J. Divakar, C. B. Reese, J. Chem. Soc., Perkin. Trans. 1 1992, 179.
- [29] W. L. Sung, J. Chem. Soc., Chem. Commun. 1981, 1089.
- [30] D. P. C. McGee, A. Vaughn-Sette, C. Vargeese, Y. Zhai, J. Org. Chem. 1996, 61, 781.
- [31] M. Vaultier, N. Knouzi, R. Carrié, Tetrahedron Lett. 1983, 24, 763; N. Knouzi, M. Vaultier, R. Carrié, Bull. Soc. Chim. Fr. 1985, 5, 815.
- [32] M. J. Robins, S. D. Hawrelak, A. E. Hernández, S. F. Wnuk, Nucleosides, Nucleotides 1992, 11, 821.
- [33] M. Ikehara, T. Maruyama, H. Miki, Tetrahedron Lett. 1976, 4485.
- [34] M. Ikehara, T. Maruyama, Chem. Pharm. Bull. 1978, 26, 240.
- [35] M. Imazawa, F. Eckstein, J. Org. Chem. 1979, 44, 2039.
- [36] C. Henke, Ph. D. Thesis, University of Konstanz, 1994.
- [37] B. S. Schulz, Diploma Thesis, University of Konstanz, 1993.
- [38] M. Resmini, W. Pfleiderer, Helv. Chim. Acta 1993, 76, 158.
- [39] H. Schirmeister, W. Pfleiderer, Helv. Chim. Acta 1994, 77, 10.
- [40] S. M. Gryaznov, R. L. Letsinger, J. Am. Chem. Soc. 1991, 113, 1879.
- [41] S. M. Gryaznov, R. L. Letsinger, Nucleic Acids Res. 1992, 24, 68.
- [42] M. Beier, Ph. D. Thesis, University of Konstanz, 1996.
- [43] B. Greiner, Ph. D. Thesis, University of Konstanz, 1996.
- [44] M. D. Matteucci, M. H. Caruthers Tetrahedron Lett. 190, 21, 719.
- [45] S. L. Beaucage, M. H. Caruthers, Tetrahedron Lett. 1981, 22, 1859.
- [46] M. A. Dorman, S. A. Noble, C. J. McBride, M. H. Caruthers, Tetrahedron 1984, 40, 95.
- [47] M. D. Matteucci, M. H. Caruthers, J. Am. Chem. Soc. 1981, 22, 1859.
- [48] W. Guschlbauer, K. Jankowski, Nucleic Acids Res. 1980, 8, 1421.
- [49] P. S. Miller, P. Bhan, L. S. Khan, Nucleosides, Nucleotides, 1993, 12, 785.
- [50] H. Aurup, T. Tuschl, F. Benseler, J. Ludwig, F. Eckstein, Nucleic Acids Res. 1994, 22, 20.
- [51] A. Brandström, B. Lamm, I. Palmertz, Acta Chem. Scand. 1976, 28, 699.